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Abstract— This paper presents a new algorithm for mutual
exclusion in which each passage through the critical section costs
amortized O(log2 log n) RMRs with high probability. The algo-
rithm operates in a standard asynchronous, local spinning, shared-
memory model with an oblivious adversary. It guarantees that
every process enters the critical section with high probability.
The algorithm achieves its efficient performance by exploiting a
connection between mutual exclusion and approximate counting.

1. INTRODUCTION

Coordinating access to shared resources is a fundamental

problem in parallel computing. In the classic problem of

mutual exclusion, introduced by Dijkstra [10], each process

attempts to gain exclusive access to some shared resource.

Whenever a process gains exclusive access, it can safely

execute its critical section.

There have been hundreds of papers written on mutual

exclusion; see, e.g., [1]–[4], [8], [11], [14]–[16], [19]. Perfor-

mance of a mutual-exclusion algorithm is typically measured

in terms of remote memory references or RMRs. The assump-

tion is that each process has a local memory/cache, which it

can access cheaply, and a read/write shared memory, which

is expensive to access—these are the RMRs. Processes thus

have the capacity to perform local spinning for free, i.e., to

spin-wait on a local variable until it changes. (Without local

spinning, efficient mutual exclusion is impossible [19].)

Until recently, the most efficient mutual-exclusion algo-

rithms, such as the one by Yang and Anderson [19], used

O(log n) RMRs per passage on a system of n processes.

It was recently proved that this bound is optimal for

deterministic algorithms [8], [11]. In 2009 Hendler and

Woelfel [14] showed that randomized algorithms can per-

form better than deterministic algorithms by demonstrating

one that achieves O(log n/ log log n) expected RMRs per

passage.

Most efficient prior solutions (typified by [14], [19]) are

based on a tournament tree construction. A process’s passage

begins at the leaf of a tree. Processes compete to climb the

tree. When a process reaches the root, it executes its critical

section and then exits the tree, allowing other processes to

continue competing. Since the degree of the tree must be
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relatively small (to ensure that competition at each node is

efficient), it is hard to achieve performance that is much

better than O(log n) RMRs per process.

Results: This paper represents a departure from pre-

vious work in terms of techniques, adversary model, and

performance. We give a mutual exclusion protocol where

each process performs only O(log2 log n) amortized RMRs

per passage with high probability. Our protocol is random-

ized and works against an oblivious adversary; every process

enters the critical section with high probability.

Mutual Exclusion and Counting: Our work exploits

a connection between mutual exclusion and approximate

counting. It should not be surprising that such a connection

exists. Consider, for example, a standard “mutual exclusion”

mechanism found in retail stores everywhere: each customer

takes a number, issued in sequential order, and the customers

are serviced in the order of their numbers. (Lamport fa-

mously exploited this idea in the Bakery Algorithm [17].)

There are several difficulties in putting this connection

to good use. First, mutual-exclusion algorithms have gener-

ally possessed better complexities than counting algorithms.

Prior to [5], the best concurrent-counter protocols took Ω(n)
steps per increment, and even the best approximate counting

protocols were just barely sublinear [6]. Thus, it might have

seemed unlikely that reducing mutual exclusion to counting

would yield asymptotically good results. It was an exciting

development when Aspnes et al. [5] gave an elegant wait-

free data structure for exact counting with only O(log2 n)
steps per increment and O(log n) steps per read. These

counting bounds are still exponentially larger than our goal

of O(log2 log n) RMRs for mutual exclusion. However, we

can leverage the counter construction of [5] to build an

approximate counter in which increment operations take

O(log2 log n) steps.

A further difficulty is that wait-free counter (and

approximate-counter) constructions only support increment,

not decrement, operations. Ideally, a process would incre-

ment a counter on beginning its passage and decrement

a counter on completing its passage. In this case, the

value of the counter would indicate the number of active

processes. This information would significantly simplify the

construction of a mutual exclusion algorithm. Unfortunately,

it appears difficult to support both increment and decrement

efficiently (even for exact counters).



This paper takes advantage of the connection between

(approximate) counting and mutual exclusion by weakening

what we actually require from the counter, i.e., by relying

on an approximate counter with no decrement operation.

Adversary Models: While we give exponentially better

bounds than previous papers (e.g., [15], [16], [19]), we

cannot claim that our results subsume these earlier papers,

because we depart from the adaptive-adversary model, in-

stead assuming an oblivious adversary. It has been conjec-

tured [18] that for an adaptive adversary, Ω(log n/ log log n)
RMRs per process is a lower bound (for starvation-free

algorithms). This would imply that a weaker adversary is

essential to obtain our improved bounds. This paper is the

first to beat the O(log n/ log log n) RMR bound for some

adversary.

An oblivious adversary models many but not all sources

of asynchrony. Specifically, it models asynchrony whose

sources are independent of the choices made by the mutual-

exclusion protocol (e.g., speed changes caused by other

programs competing for CPU cycles or memory bandwidth).

It might be interesting to execute our algorithm in parallel

with an existing algorithm [15], [16], [19] that can tolerate

an adaptive adversary (using a simple lock to mediate

winners of the two protocols). The resulting combination

would be fast when the adversary is oblivious, while still

guaranteeing good results when the adversary is not.

Model: We consider n processes, each of which ac-

cesses the critical section at most once. (This simplifies

the presentation, because we can associate each passage

with a unique process. Generalizing to a polynomial number

of accesses per process follows trivially.) Each process

takes an arbitrary (unbounded) number of steps, and the

oblivious adversary (acting as a scheduler) decides, for

each execution, the order in which processes take steps. An

oblivious adversary makes these choices with full knowledge

of the initial state, including the mutual-exclusion protocol,

but without knowing the outcomes of random coin flips

of the processes. Thus, an oblivious adversary scheduler

determines the entire schedule prior to the execution.

Since modern architectures cache memory aggressively,

we model memory accesses as per the cache-coherent (CC)

model. Each process keeps a local cache of some variables

from the shared memory. Whenever the value of a variable

is cached locally, a process can read it for free. Whenever a

variable is written, all caches except for that of the writing

process are invalidated; the next read by each process (except

for the writing process) costs a normal shared memory

access, i.e., an RMR.

We make use of local (cached) memory for the purpose

of spinning. While executing the protocol, processes may

register events, meaning they indicate a location in memory

to monitor, and a callback function to execute if that location

in memory is modified. During registration, this memory is

read into cache, at which point it is continually monitored

locally. If that location in memory ever changes, the cache

is invalidated, and the process discovers that the memory

has changed. This wakes/interrupts the process, and the

previously registered callback function is executed. Notice

that registering an event and discovering that it has been

triggered each cost one RMR, while the remaining local

monitoring is free. All local spinning will be captured via

this mechanism; every other read or write operation is

assumed to cost an RMR.

We also assume, without loss of generality, that processes

can execute compare-and-swap (CAS) operations. We can

transform each CAS operation into a set of read and write

operations using the construction of Golab et al. [12]. They

show that each CAS operation requires O(1) RMRs.1 A

CAS(v, old ,new) operation compares v and old ; if they are

equal, then it atomically sets v to new .

2. ALGORITHM OVERVIEW

We now give an overview of the mutual exclusion al-

gorithm. We begin with high-level ideas. We progressively

summarize problems and their solutions until the full algo-

rithm comes into focus.

2.1. High-level Ideas

Assume that we have a counter C that supports both incre-

ment and decrement operations. In this case, every process

increments C when it begins its passage and decrements C
when it completes its passage. At any given time, reading

C yields a count of the number of active processes.

After incrementing counter C, a process reads the counter

and uses the value to find a free spot in the waiting array A,

which is used for local spinning while processes wait their

turn to enter the critical section. Specifically, if the counter

C returns value k, then the process randomly searches for a

spot in the first Θ(k) slots in the array. Since the counter C
accurately estimates the number of active processes, at most

a constant fraction of the first Θ(k) slots are full; hence each

random probe has a constant probability of finding an empty

slot. Once the process finds a spot, it goes to sleep, spinning

until it is awakened.

When a process exits the critical section, it searches

for a replacement process in the array A, handing off

control of the critical section. It proceeds by reading the

counter C—assume that k is the value returned by C—and

searching randomly for a process in the first Θ(k) slots of

the array. If there are k active processes waiting in the first

Θ(k) slots of the array, each random probe has a constant

probability of finding an occupied slot. At this point, the

exiting process removes itself from the array A, wakes the

process occupying the selected slot, and decrements the

counter C.

1Their implementation is strongly linearizable, and hence can be safely
used in the presence of an oblivious adversary; see [13].



There are problems with this basic protocol. First, we

have to address how the very first process enters the critical

section. Second, we have to cope with the case when many

processes have incremented the counter, but not yet joined

the array. Third, we can only use counters that increment,

not decrement.

In Section 2.2 we provide a base protocol that addresses

these issues. The resulting protocol is inefficient, but illus-

trates the basic ideas of our protocol. In Section 2.3, we

show how to replace the exact counters used in Section 2.2

with approximate counters.

Finally, in Section 2.4, we address the problem of decre-

menting counters as follows. We maintain two separate

counts: the (approximate) number of increments and the

(exact) number of decrements. As long as the number

of increments is sufficiently larger than the number of

decrements, then we can ignore the decrements and the

counter still yields a constant-factor approximation. When

the number of decrements becomes sufficiently large, we

reset the counters, beginning a new epoch.

This resetting, however, creates a chicken-and-egg prob-
lem: the first step that a process takes in an epoch must

be a write—a process must make a mark—specifically, one

that is visible to other processes. If the first step is a read,

then a set of slow processes could wake up, take invisible

steps, sleep until the epoch finishes, wake up in the next

epoch, take invisible steps, sleep until the epoch finishes,

and so on, without accomplishing useful or visible work.

In this case, the total work could grow too large because

of the invisible read operations. On the other hand, if the

first step of a process in an epoch is a write, how does the

process discover the epoch number (i.e., where to find the

data structure for the given epoch)? We address these issues

in Section 2.4.

2.2. Base Mutual Exclusion Protocol

The basic mutual exclusion protocol consists of four

components: (i) a variable lock to guard the critical section;

(ii) an array A, which processes use while waiting for

the critical section to become free; (iii) a counter C that

processes increment immediately on joining the system, and

(iv) a counter join-count that processes increment after they

have joined the array A (but before any spinning occurs).

The lock is implemented via a CAS operation: when a pro-

cess p wants to claim the lock, it executes CAS(lock , 0, p).
If the CAS operation succeeds, then p has acquired the lock.

When a process p wants to release the lock, it simply writes 0
to lock . The counters C and join-count can be implemented

using the construction in [5].

A process p enters the critical section as follows. First,

it increments the counter C. It then repeats the following

until it succeeds in claiming a slot in A: (i) it reads value

k ← C.read(); (ii) it chooses a random location � in array A
in the range 1 . .Θ(k); and (iii) it attempts to claim slot � by

executing CAS(A[�], 0, p). When the CAS succeeds, process

p increments counter join-count . It then tries to acquire the

lock . If the process succeeds, it enters the critical section.

Otherwise, it spins on the array slot A[�].

A process p exits the critical section as follows. First, p
sets the array slot A[�] ← −1, indicating that the slot is

now empty. Next, p releases the lock. Finally, p repeats the

following steps: (i) it reads c1 ← C.read(); (ii) it reads c2 ←
join-count .read(); (iii) if c1 > c2, then p exits; otherwise,

(iv) it chooses a random location � in the range 1 . .Θ(c1);
and (v) if A[�] > 0, then it signals to the process spinning

at A[�] to wake up and exits. Otherwise, p repeats (1)–(v).

This protocol ensures mutual exclusion, as no process

enters the critical section without acquiring the lock. The

protocol also guarantees liveness: Assume process p spins

forever. Since p fails to acquire the lock, we know that at

least one process succeeds in entering the critical section.

Let q be the last process to exit the critical section. Observe

that q necessarily releases the lock at some point after p tries

to acquire it. Since q is the last process to exit the critical

section, it does not find (and awaken) another process in A.

Thus, we conclude that q exits on finding c1 > c2. This exit

condition implies that some process p′ has incremented c1
but not c2; p′ will proceed to try to acquire the lock after q
has released it, ensuring that either p′ or some other process

enters the critical section after q, which is a contradiction.

Finally, we observe that the algorithm is reasonably effi-

cient (i.e., on average each process performs O(1) counter

increments and other operations) as long as the number of

processes that have exited the critical section is at most a

constant fraction of the total number of processes that have

incremented counter C. To see this, there are two parts of

the protocol that we have to examine.

First, looking for a free slot in the array A: since a process

reads the counter C prior to searching for a spot in the array,

either it succeeds with constant probability, or the number

of processes in the system has doubled since it read C. In

the latter case, we can amortize the cost of the read against

the newly arrived processes.

Second, finding a process in the array A, after exiting the

critical section: we search for a process in A only when

c1 = c2, i.e., all the processes that have begun joining have

found a slot in the array A. Thus, at least a constant fraction

of the slots in the range from 1 . .Θ(c1) are either marked by

processes that are spinning, or by processes that have already

exited the critical section. If the number of processes that

have completed is at most a constant faction of the number

of processes that have begun joining, then each probe in A
has a constant probability of finding a spinning process.

On the other hand, if most of the processes have already

completed the critical section (and the array A is empty),

then this protocol becomes inefficient.



2.3. Approximate Counters

We now observe that we can replace the exact counters

with approximate counters. In Section 4, we show how

to implement approximate counters where each increment

and read operation requires at most O(log2 log n) steps. Al-

though the exact counter works even with a strong adversary,

our approximate counter requires a weaker adversary.

Replacing the exact counter with the approximate counter

creates two potential problems. First, we use the value k read

from the counter C to find a spot in the array A. Since the

counter is within a constant factor of the correct value, it

remains easy to see that the range 1 . .Θ(k) is big enough

to contain all the processes that have joined.

The second problem arises when a process exits the

critical section, since the values c1 and c2 may each be off by

a constant factor. Instead of exiting when c1 > c2, a process

exits if for some constant 0 < ε < 1 (which depends on the

approximation factor of the counters), the value c1 > c2/ε.
In this case, at least one process has incremented C and

not join-count , and hence it is safe for a process leaving

the critical section to exit. Otherwise, if c1 ≤ c2/ε, we

know that some Θ(c1) processes have completed joining

and hence we can find one in the array A in the range

1 . .Θ(c1). Thus, using approximate counters instead of

exact counter, the mutual exclusion protocol maintains the

properties previously discussed.

2.4. Resetting the Counters

Finally, we address the issue of efficiency. We keep a

count LCount of the number of processes that have com-

pleted the critical section. When lCount reaches a constant

fraction of C, we reset the data structure and begin a new

epoch. We cannot, however, simply create a new copy of

the data structure (i.e., counters C, join-count , array A) for

the new epoch and move all the processes to the new data

structure. The (chicken-and-egg) problem is as follows.

Assume that in every epoch at least T = Θ(log4 n)
processes complete (for reasons to be explained later). Thus,

there may be Θ(n/T ) epochs. If each epoch has its own

data structure (i.e., counters and arrays), then the first step

a process takes in an epoch must be to read some epoch

counter that specifies which data structure to use. Consider

some Θ(n) processes that read the epoch counter without

modifying the data structure in any other way, and then

stall until the epoch ends. Since the large batch of stalled

processes is invisible, each epoch must come to an end after

some T processes join, enter the critical section, and leave.

The total number of steps taken by the batch of stalling

processes, after Θ(n/T ) epochs, is Θ(n2/T ), which is too

much.

Instead, we insist that in its first step in an epoch, a

process makes a mark, i.e., begins by incrementing counter

C. We instantiate three copies of counter C which we call

C[0], C[1] and C[2]. When a process increments counter C,

it simply chooses one of the three counters at random to

increment. In epoch e, we read from counter C[e mod 3].
With constant probability, a process performing an increment

chooses the correct counter for the current epoch. Thus, the

value read from counter C[e mod 3] remains a constant-

approximation of the correct count. (Notice that a further

problem is ensuring that one write step by a process is

sufficient to ensure that it is counted, as incrementing the

counter may take more than one step; this is achieved by a

helping mechanism and is explained further in Section 5.)

Each epoch maintains its own specific copy of counter

join-counter and array A. After process p increments the

randomly selected counter C[·], it reads the epoch counter

and proceeds to use the correct instance of the data structure.

Whenever an epoch ends, the counter C[(e−1) mod 3] is

cleared, and the epoch counter is incremented. At the same

time, all the processes spinning in the array A for the old

epoch are awakened, and repeat the entire protocol in the

new epoch (i.e., incrementing C[·], joining A, incrementing

join-counter ). Since the counter C[·] is a good approxima-

tion of the total number of processes that have taken even
one step, and we use the value of counter C[·] to determine

when to end the epoch, we can amortize the work done by

processes moving from one epoch to the next against the

work done by processes that complete in that epoch.

The remaining problem is that, since we choose a counter

C1 at random, the estimate is good only after a polylogarith-

mic number of processes join. (The estimate can be too low;

it can never be more than a factor of 3 too big.) Thus, we

only rely on the counter C[·] when at least T = Θ(log4 n)
processes have joined it. To cope with this problem, we will

in parallel execute a second (deterministic) mutual exclusion

instance which only T processes are allowed to use. We can

construct this secondary instance using existing techniques

where each process performs at most O(log T ) steps.

There are also three places we rely on counter C[·]. First,

when we are searching for a spot in the array A, if the value

read from the counter is smaller than T , we round the value

up to T . Second, when we are searching for a process in the

array A, if the value read from the counter is smaller than T ,

we round the value up to T . Finally, when comparing c1 and

c2 (to determine if a process exiting the critical section can

safely depart), we simply exit if the counter c1 < Θ(T ): in

that case, it is safe to assume that the small mutex instance

will send a process into the critical section.

3. BACKGROUND

This section describes four basic building blocks.

3.1. Max-Registers

A max-register is an object that stores the largest value

ever written to it. A max-register supports two operations:

read and write, where the read operations returns the largest

value ever written. A max-register is parameterized by



a value vmax that specifies the maximum allowed value.

Aspnes et al. [5] describe a max-register in which each

operation has cost O(log vmax).

3.2. Exact Activity Counter
An activity counter has a set of ports P , and supports two

operations: (i) join(p), for some port p ∈ P , and (ii) read().
The read operation returns a count of the number of ports

for which there has been at least one join operation. (If there

are two join operations executed on the same port, then the

count is only incremented by one.) The counter construction

in [5] immediately yields an exact activity counter with cost

O(log |P |) to read and O(log2 |P |) to increment.

3.3. Small Bounded Counter
We also need a traditional counter that returns the ex-

act number of increments. The maximum value of the

counter will be bounded by some small value vmax. The

bounded-counter construction uses an exact activity counter

of size 2vmax. To increment the counter, a process repeatedly

chooses and joins a port p ∈ {1, . . , 2vmax} at random until

it finds one that is free, or it discovers that the counter

has exceeded vmax. Notice that each attempt to find a port

succeeds with probability at least 1/2.
One additional feature of this counter is that it returns the

port number claimed during the increment, if any. Thus, it

will return a valid port identifier to at least vmax and at most

2vmax processes.
Lemma 1: Assume log n ≤ vmax ≤ n. For every c, for

a set of k join operations, collectively they cost O((k +
vmax) log

2 vmax) RMRs, with probability ≥ 1− 1/nc. �
Observe the distinct semantics between these two coun-

ters: the bounded counter does not require the calling process

to provide a port number, and counts every increment; the

exact activity counter assumes the caller has a port number,

and counts the number of ports that have been joined.

3.4. Deterministic Mutual Exclusion
When there are only a small (e.g., polylogarithmic) num-

ber of active processes, we rely on a deterministic mutual

exclusion protocol (e.g., [19]). The protocol has P ports,

i.e., can be accessed by up to |P | different processes, where

|P | will be polylogarithmic. It supports two operations: (i)

join(p, on-win-mutex), which accesses the mutual exclusion

object on port p and executes the function on-win-mutex
when the critical section is obtained; and (ii) leave(p), which

indicates that the process on port p is leaving. The protocol

consists of a tree with |P | leaves where each node has a lock

that can be claimed (and released) via a CAS operation. On

joining port p, a process claims the lock at the leaf. It then

attempts to walk up the tree as in [19], claiming each lock on

the leaf-to-root path. If a lock is already taken, the process

spins locally, waiting for it to become free. When a process

leaves (or completes the critical section), it walks down the

tree, releasing the locks.

4. APPROXIMATE ACTIVITY COUNTER

This section describes an approximate activity counter,

approx-counter, that counts the number of processes that

have executed a join operation. It also supports a clear that

resets the counter to zero; however, we require that the clear
operation is never executed by more than one process con-

currently. With high probability, the read operation returns a

constant-fraction approximation of the number of processes

that have joined the counter since it was last cleared.

Basic Idea: Here we adapt a standard trick: if k ≤ n
independent variables 〈X1, . . . , Xk〉 are each exponentially

distributed on the range [1, . . . , log n], then in expectation,

max(Xj) = log k (to a suitable approximation). If each

joining process chooses a value at random according to

the exponential distribution and writes that value to a max-

register, then the max-register stores an estimate of the

number of processes that have joined.

To achieve a high-probability estimate of the number of

joins, we modify this scheme slightly: a joining process only

writes a value j to the max-register if at least log n other

processes have also randomly selected j. For each of the

log n possible values of j, we use an activity counter to de-

termine whether sufficiently many processes have chosen j.

Observe that the approximate counter does not work if the

adversary is adaptive, because an adaptive adversary could

bias the estimate by delaying the small number of processes

that randomly select large values.

Detailed Description: The counter is parameterized by

a constant c. The data structure consists of four parts: (i) a

max-register M , (ii) an array of log n exact activity counters,

each with c log2 n ports, (iii) a two-dimensional array of

bits L that contains one bit for every port on every counter,

and (iv) a bounded counter. To clear the counter, we simply

allocate new memory for the max-register, exact activity

counters, and bounded counter, thus allowing each to be

“atomically” cleared. (Thus we can view M and C and sC
as “pointers” to the specified data structures.’) The array L
is cleared sequentially (so that there is no need to read a

pointer to find the location of array L).

We define a threshold T = Θ(log4 n) differentiating

“small activity” and “normal activity”: when there are fewer

than T active processes, we rely on the bounded counter;

when there are more than T active processes, we rely on

the estimate derived from the max-register M and the exact

activity counters. This is necessary since the estimate derived

in this fashion is only accurate when a polylogarithmic

number of processes have joined.

Joining the approximate counter consists of two parts:

a pre-join and a join. In the pre-join a process chooses

an exact activity counter at random using an exponential

distribution, and it chooses a port on that counter using

a uniform distribution. It then marks the bit in array L
associated with this counter and port. By making this mark



immediately during the pre-join, slower processes can have

their join finished by faster processes. After the pre-join, a

process calls join specifying the previously chosen counter

and port. The process then checks whether the bit in the array

L remains set (i.e., there has been no intervening clear), and

if so, the process joins the specified exact activity counter

at the specified port. If the counter value is sufficiently big,

then the process writes the counter id to the max-register.

Finally, the process, increments the bounded counter.

A read operation examines both the bounded counter and

the approximate counter. If the bounded counter exceeds the

threshold T , then it returns the maximum of T and 2m log n,

where m is the value read from the max-register. Otherwise,

it simply returns the value of the bounded counter.

One risk is that a slow process may never get counted.

The array L is the location where a process first “makes its

mark.” The help procedure is executed by faster processes,

ensuring that every process that makes a mark is counted. To

help, a process chooses a random entry in the array L, and

if there is a mark, then it completes the join for the process

that made a mark there. After Θ(log4 n) helping operations,

with high probability, every process that has made a mark

has been counted.

Analysis: We now argue that the counter returns a

constant factor approximation.

Lemma 2: For every constant c, there exists a constant

0 < δ < 1 (as a function of c) such that: Let z be the value

returned by some read() operation τ . Assume that there are

no clear operations concurrent with τ . Let κ be the most

recent clear operation that completed (if any exists) prior to

the beginning of τ . If there exists a set of p processes that

begin executing the join procedure after clear operation κ,

and completed the join procedure prior to the read operation

τ , then z ≥ δp with probability at least 1/nc. �
Lemma 3: For every constant c ≥ 3, there exists a

constant γ > 1 (as a function of c) such that: Let z be the

value returned by some read() operation τ . Let κ be the most

recent clear operation (if any exists) that completed prior to

the beginning of τ . Let P be the set of join operations that

end after κ begins and begin no later than when the read
operation ends. Then z ≤ γ|P | with probability at least

1− 1/nc. �
Next, we show that if there is sufficient helping, every

process is counted (even those that are slow).

Lemma 4: For every constant c, there exists a constant

ψ < 1 (as a function of c) such that: Let z be the value

returned by some read() operation τ . Let H be a set of

help() operations, where |H| ≥ 3c2 log4 n. Assume that

there are no concurrent clear operations, and let κ be the

most recent clear operation that completed (if any exist).

If there exists a set of p ≥ T processes that execute at

least the first write step of a pre-join operation after the

clear operation κ and prior to the first operation in H , and

if the read operation τ begins after the last operation in H

1 object approx-counter〈c〉
2 // Threshold between small & normal activity:

3 threshold T = Θ(log4 n)
4 M : max-register〈log n〉, initially 0
5 // Array of activity ctrs, counting to c log2 n:

6 C [1 . . log n] : basic-counter〈{1 . . c log2 n}〉
7 // L[i][j] is value in jth leaf of the ith ctr:

8 L[1 . . log n][1 . . c log2 n] : two-dim array of bits
9 sC : bounded-counter〈T 〉

10
11 procedure pre-join() // Indicate intent to join.

12 // Random exponentially distributed choice:

13 Choose i ∈ {1 . . log n}: Pr(i) = 1/2i

14 // Random uniformly distributed choice:

15 Choose j ∈ {1 . . c log2 n}: Pr(j) = 1/c log2 n
16 L[i, j]← 1 // Process makes its mark.

17 return 〈i, j〉 // Return counter and port.

18
19 procedure join(〈i, j〉) // Join counter i at port j.

20 // Copy in case of concurrent clear:

21 C′ ← copy of pointer to C[i]
22 M ′ ← copy of pointer to M
23 S′ ← copy of pointer to sC
24 // If the mark is still there:

25 if L[i, j] = 1 then
26 C′.join(j) // Join ctr i at port j.

27 // If ctr is big, then write max-register.

28 if (C′.read() ≥ c log n) then M’.write(i)
29 S ′.join()
30
31 procedure check(〈i, j〉) return (L[i, j] = 1)
32
33 procedure read() // Read approx counter.

34 v1 ← sC .read()
35 v2 ←M.read()
36 if v1 ≥ T then return max(v1, 2

v2 log n)
37 else return v1
38
39 // Help those that have not finished joining.

40 procedure help()
41 // Pick a random ctr i and leaf j to help join.

42 Choose i ∈ {1 . . log n}: Pr(i) = 1/ log n
43 Choose j ∈ {1 . . c log2 n}: Pr(j) = 1/c log2 n
44 if L[i, j] = 1 then
45 C[i].join(j)
46 if (C[i].read() ≥ c log n) then M.write(i)
47
48 // The clear operation cannot be called concurrently.

49 procedure clear() // Clearing is not atomic.

50 M ← new(max-register〈log n〉)
51 C ← new-array(basic-counter〈1 . . c log2 n〉)
52 sC ← new(bounded-counter〈T 〉)
53 for i = 1 to log n, j = 1 to log2 n do L[i, j]← 0

completes, then z ≥ ψp with probability at least 1− 1/nc.

Finally, we bound the cost of using the approximate counter:

Lemma 5: Suppose that after each clear operation, there

are at least Ω(T ) join operations before the next clear. Then

each pre-join, join, check, read, and help operation has

amortized cost O(log2 log n), with high probability. Each



clear operation has cost O(log2 n). �
Note that we only clear the counter once Θ(T ) processes

have joined; otherwise, the above bounds may not hold.

5. DYNAMIC EPOCH-BASED COUNTER

This section describes a dynamic counter that supports

both join and leave operations. The basic idea is to divide the

execution into epochs, where each epoch has an approximate

counter. As long as the number of processes that have joined

an epoch is much larger than the number of processes that

have left an epoch, then the value returned by the counter

remains a good approximation. Whenever the number of de-

parted processes reaches a constant fraction of the processes

that have joined, then a new epoch is triggered, and all the

processes are awakened and instructed to join the new epoch.

There are two challenges here. First, the dynamic counter

must continue to give good estimates, even as processes

slowly transition from one epoch to the next. Second, as

already discussed, the very first step of a process must be a

write operation that “makes a mark.” Hence, a new process

must increment the counter before reading the epoch counter.

We solve both problems as follows: instead of allocating

one approximate counter per epoch, we use three approxi-

mate counters, rotating the approximate counter in use for

the current epoch. That is, in epoch e, we read from counter e
mod 3. When a process wants to join, it randomly chooses

a counter to increment, ensuring that a constant fraction

of joins update the right counter. When we transition from

epoch e to e + 1, we clear counter (e − 1) mod 3, so we

can continue to observe the final count from epoch e, while

we transition to e+ 1.

Joining: A process p joins the dynamic counter by

calling the function join(p, f), where f is a callback function

to be executed when the epoch ends. The first part of the

join procedure chooses an approximate counter to increment

(Line 17) and attempts to execute a pre-join on that counter

(Lines 22–27). This pre-join is where the process performs

its first write, ensuring that it can be counted immediately.

The pre-join is repeated until it succeeds in making its mark

in an epoch without the epoch changing. At this point the

join is completed (Line 28), and the process helps each of

the three counters (Line 30). Finally, the process registers

the callback function to be triggered when the epoch ends.

Specifically, if the process joined at epoch e, then the

callback function is triggered when new-epoch[e] toggles to

true, indicating that the epoch finished, and the procedure

join returns the value e.
Leaving: When a process that joined epoch e exits

the critical section, it executes leave(e). Notice that since

a leave is executed only after a critical section, there are

never concurrent leave operations. The process first checks

whether the epoch has advanced beyond e, and if so, the

leave is ignored. Next, the departing process increments

the leave counter (Line 48) which tracks the number of

processes that have left. (Since there are no concurrent leave
operations, we need not implement a concurrent counter.)

Next, the process reads the dynamic counter (Line 49)

to check how many processes are currently active. If the

number of processes that have left has reached a constant

fraction of the processes that have joined (Line 53), and if at

least T processes have left, then the epoch ends: the counter

for epoch e − 1 is cleared, the epoch is incremented, and

processes are triggered to join a new epoch. Note that at

least T processes complete in each epoch.

Analysis: We now show that the dynamic counter

returns a constant-factor approximation of the number of

active processes. We first argue that the number of processes

that take steps in epoch e−1 is no greater than some constant

times the number of processes that complete in epoch e. This

allows us to amortize the work done by processes in e− 1
against processes that complete in epoch e. Let Pe be the

set of processes that execute one read/write step of Line 22

in epoch e.
Lemma 6: For every constant c, there exists a constant

ε < 1 such that: If ζ is the last leave operation in epoch e,
then at the end of ζ, Lcount [e] ≥ ε|Pe−1| with probability

at least 1− 1/nc. �
We now show that the dynamic counter returns a value

that is at least as large as a constant ε times the number of

processes that completed a join operation in that epoch.

Lemma 7: For every constant c, there exists a constant

0 < ε < 1 such that: For every read operation τ in epoch e,
where z ≥ 0 is the value returned by τ , if there exists a set

P ⊆ Pe of at least 48cT processes that completed a join in

epoch e prior to the beginning of τ , then z ≥ ε|P |. �
Next, we show that the counter cannot grow too big: its value

is bounded by the number of processes that have joined in

the most recent three epochs. This follows since the counters

are cleared every three epochs.

Lemma 8: For every constant c, there exists some con-

stant γ1 > 1 such that: For every read operation τ in epoch

e that returns value z, if P is the set of processes that take

one step of a join in epochs e− 2 or e− 1 or e, where the

join begins prior to the end of τ , then z ≤ γ1|P |. �
Finally, we show that the value returned by the dynamic

counter is at most a constant factor greater than the number

of active processes. This lemma relies on two facts: First:

at the end of each leave operation, the value of the leave

counter is at most a constant fraction of the number of active

processes. This is important, as it ensures that not too many

processes leave during an epoch, and hence we can prove a

second claim: every read operation returns a value at most

some constant times the number of processes active at the

end of the operation. The first claim itself depends on the

second, however, as the decision to end an epoch depends on

the value of the counter (Line 53). We must also account for

when the number of processes falls below the threshold T .

Let Aζ be the number of active processes at the end of leave



1 object dynamic-counter〈c〉
2 // Threshold between small and normal activity.

3 threshold T = Θ(log4 n)
4 C [0 . . 2] : approx-counter〈c〉
5 // The epoch is updated by a leaving process.

6 epoch : global integer, initially 1
7 // Count # processes that leave in epoch e:

8 Lcount [1 . . n] : array of integers, initially all 0
9 // During epoch e, new-epoch[e− 1] = true.

10 new-epoch[1 . . n] : array of bits, initially false
11 // Proc. p stores epoch it joined in last-epoch[p].

12 last-epoch[1 . . n] : array of int, initially all 0
13
14 // on-new-epoch is called when epoch ends.

15 procedure join(p, on-new-epoch)
16 // Choose approx. counter to increment.

17 Choose i ∈ {1 . . 3} such that: Pr(i) = 1/3
18 done ← false
19 while done = false do
20 // Port b of counter a marked.

21 // First RMR occurs here in pre-join.

22 〈a, b〉 ← C[i].pre-join()
23 last-epoch[p]← epoch // Read epoch.

24 // Check that ctr has not been cleared and

25 // that the epoch has not changed.

26 done ← C[i].check(〈a, b〉) and
27 last-epoch[p] = get-epoch()
28 C[i].join(〈a, b〉) // Finish join port b, ctr a.

29 // Help increment counters

30 C[0].help(); C[1].help(); C[2].help()
31 // Monitor last-epoch[p].

32 // Call on-new-epoch when epoch changes.

33 register(when(new-epoch[last-epoch[p]]=true))
34 do on-new-epoch(last-epoch[p] + 1))
35 return(last-epoch[p]) // Return epoch number.

36
37 procedure read()
38 e← epoch // Read current counter.

39 v ← C[e mod 3].read()
40 // If epoch changed, return -1.

41 if epoch = e then return v
42 else return −1
43
44 // The leave operation cannot be called concurrently.

45 procedure leave(e) // Leave after exiting critical sec.

46 if epoch = e then
47 // Increment count of departed procs:

48 Lcount [epoch]← Lcount [epoch] + 1
49 total ← read() // Read dynamic counter.

50 // If # departures is above threshold,

51 // and # departures is a large-enough

52 // fraction of arrivals, epoch ends.

53 if (Lcount [epoch] > λ · total) and
(Lcount [epoch] ≥ T ) then

54 // Clear counter for previous epoch.

55 C[(epoch − 1) mod 3].clear()
56 epoch ← epoch + 1 // Increment epoch.

57 // Trigger wake-up of all procs.

58 new-epoch[epoch − 1]← true
59
60 procedure get-epoch()
61 return epoch

ζ in epoch e, and let Aτ be the number of active processes

at the end of τ . Note that λ < 1 is defined in Line 53, and

its precise value is fixed to Θ(1/γ1) in the proof.

Lemma 9: For every constant c, there exists a constant

β ≥ 1 such that for every epoch e:

1) For every leave operation ζ in epoch e: Lcount [e] ≤
max(4λβ|Aζ |, T ) at the end of ζ, with probability at

least 1− 1/nc.

2) For every read operation τ in epoch e that returns

value z, then z ≤ βmax(|Aτ |, T ), with probability at

least 1− 1/nc. �

6. MUTUAL EXCLUSION ALGORITHM

We now give the mutual exclusion algorithm. To ensure

safety, the protocol guards the critical section with a lock .

A process can enter the critical section only after writing

its identifier to the lock with a CAS operation. We use a

dynamic counter C to track the number of active processes

and to define the epoch structure. When each competing

process p finishes joining epoch e, it attempts to find a slot

in a dense array A[e]. The array slot [p] stores the slot in the

array A[e] that p is currently holding. For each epoch e, we

also maintain a second approximate counter joinCount [e],
which counts the number of processes that have successfully

found a slot in the array A[e]. (The difference C minus

joinCount [e] indicates how many processes have begun but

not yet finished joining.)

For when there are only a small number of processes,

each epoch e also has a deterministic small mutual exclusion

object sMutex [e] with only Θ(T ) ports (i.e., it costs each

process O(log T ) to use). A bounded counter sC [e] (with

max value Θ(T )) assigns the first Θ(T ) processes to join

an epoch to ports.
Competing for the Critical Section: When a process

p is first activated or awakened to join a new epoch, p
executes the compete procedure. The first step is to clear all

events registered in prior epochs. Next, p executes a join on

the dynamic counter (Line 24) with the call-back function

compete as a parameter. This callback function indicates

that when the next epoch begins, the process p should call

compete again. Note that this is the first place where process

p performs an RMR after awakening, and critically, that the

RMR is a write to memory that makes a mark, allowing the

other processes to observe p’s existence.

Next, process p loops (Lines 28–31): it reads the dynamic

counter C, and attempts to claim (via a CAS) a random

location in the array A[e], selecting within a subarray based

on the value returned by C, but always of size Ω(T ). The

density of C is determined by the accuracy of the counter

C: ideally, a constant-fraction of the slots in the array A[e]
are full. This allows p to readily find a free slot. Next, in

Line 34, the process p increments the counter joinCount [e],
indicating that it has successfully joined array A[e].



1 object mutual-exclusion〈c〉
2 constant T = Θ(log4 n)
3 constant β, as defined in Lemma 9
4 constant δ, as defined in Lemma 2
5 constant ε, as defined in Lemma 7
6 // Lock to guard critical section.

7 lock : process identifier, initially zero
8 C : dynamic-counter〈c〉, dynamic counter
9 // In epoch e, spin in A[e] until awakened:

10 A[1 . . n][1 . .Θ(n)] : 2D array
11 // Slot in A where p is currently spinning:

12 slot [1 . . n] : array of integers, one per process
13 // Counts # processes that have finished joining:

14 joinCount [1 . . n] : approx-counter〈c〉, one per epoch
15 // Used to claim a port in small mutex instance:

16 sC [1 . . n] : bounded-counter〈(48cβ/ε)T 〉
17 // Small mutex instances:

18 sMutex [1 . . n] : array of deterministic mutual exclusion
instances of size (96cβ/ε)T

19
20 procedure compete(p)
21 // Stop interrupts from earlier epoch events.

22 clear-registered-events(p)
23 // Join dynamic ctr: callback function is compete.

24 e← C .join(p, compete(p))
25 done ← false
26 while done = false do
27 // Read dynamic counter.

28 v ← max(C.read(), (48c/ε)T )
29 Randomly choose slot [p] ∈ {1 . . (4/ε)v}
30 // Claim slot in array A.

31 done ← CAS(A[e, slot [p]], 0, p)
32 // Count procs that finished joining the array.

33 〈a, b〉 = joinCount [e].pre-join()
34 joinCount [e].join(〈a, b〉)
35 // First Θ(T ) processes join the small mutex.

36 s← sC [e].join()
37 if s ≥ 0 then
38 sMutex [e].join(s, small-mutex-win(p, e))
39 // Register an interrupt if a slot in A is updated.

40 register(when(A[e, slot [p]] changes))
41 do mutex-win(p, e))
42 CAS(lock , 0, p) // Try to claim lock.

43 // If p gets lock, attempt to enter critical sec.

44 if lock = p then mutex-win(p,e)

The next part of the compete procedure copes with the

case when there are a small number of processes active in

epoch e. Process p increments the small counter sC , and if

it is one of the first O(T ) processes to do so (i.e., if it gets

back a value s ≥ 0) then it competes in the small mutual

exclusion instance for epoch e, i.e., sMutex [e]. The function

small-mutex-win(p, e) is passed as the callback function to

be executed if p wins the sMutex [e] instance. If p wins, it

continually tries to get the lock until it succeeds or a new

epoch begins. At any given time, at most one process has

won the sMutex instance and is waiting for the lock.

In the last part of the compete procedure, process p
registers an event, i.e., to call mutex-win if some other

45 procedure small-mutex-win(p, e)
46 CAS(lock , 0, p) // Try to claim lock.

47 // If p gets lock, attempt to enter critical sec.

48 if lock = p then mutex-win(p,e)
49 else // If lock frees, try again.

50 register(when (lock = 0)) do small-mutex-win(p, e))
51
52 // Try to enter critical section for epoch e.

53 procedure mutex-win(p, e)
54 CAS(lock , 0, p)
55 if (lock = p) and (C.getEpoch() = e) then
56 // Stop anything that can interrupt process.

57 clear-registered-events(p)
58 Execute critical section.
59 sMutex[e].leave() // Exit small mutex instance.

60 C.leave(e) // Leave dynamic counter.

61 A[e, slot [p]]← 0 // Clear array slot.

62 CAS(lock , p, 0) // Release lock.

63 done ← false // Find process to handoff to.

64 while done = false do
65 v1 ← C.read()
66 v2 ← joinCount [e].read()
67 // If small # of participants:

68 if v1 ≤ (32βγ/δ)T then done ← true
69 // If we know ≥ 1 processes are joining: else

if v1 ≥ 2(β/δ)v2 then done ← true
70 else
71 Randomly choose i ∈ {1 . .Δv2}.
72 x← A[e, i]
73 if x>0 then done ← CAS(A[e, i], x, p)

process awakens it by modifying its slot in the array A[e].
Process p then checks whether the lock is available, and if

so, it tries to acquire it and execute mutex-win. After trying

to acquire the lock, process p can safely spin, waiting for

either a new epoch or to be awakened via the array A.

On Winning the Lock: When process p is awakened via

the array A, it executes mutex-win. The first action by p is to

try to acquire the lock . If it fails, then it continues spinning.

If it succeeds, and if the epoch has not changed, then it

clears all registered events and enters the critical section.

(Note that up until this point, it may be interrupted by other

events, e.g., a new epoch or a new mutex-win.)

When p exits the critical section, it leaves the small mutual

exclusion instances sMutex [e], it leaves the counter C, and

it departs from the array A[e]. (Note that it does not matter

in which way p won the critical section.) It then releases the

lock on Line 62, allowing others to enter the critical section.

The remainder of the mutex-win procedure ensures that

some other process will later enter the critical section. If

the number of processes in epoch e is small, i.e., they are

all contained in sMutex [e], then there is no need to do any

further work. (This is checked on Line 68.) On the other

hand, if there are processes that have entered, but not yet

finished joining the array A[e] (and not yet begun to spin),

then process p can safely exit. (This is checked on Line 69.)

Otherwise, process p must find some process in the array



and wake it. A key technical challenge is ensuring that this

array remains dense, and hence that spinning processes are

easy to find, even as some processes may not yet have joined

the array A[e], and other processes may have already left the

system. Fortunately, if there are Ω(T ) processes that have

joined epoch e, and if all of those processes have completed

joining the array A[e], then we can be sure that the array is

dense, and hence with constant probability, process p will

find a spinning process (Lines 71–73).

Analysis: Mutual exclusion follows trivially from the

use of a lock to protect the critical section.

Theorem 10: For every execution, no two processes enter

the critical section at the same time. �
The second key claim is that there is no deadlock.

Theorem 11: Every process eventually enters the critical

section, with high probability. �
We now examine the performance of the protocol.

Theorem 12: In each execution there are O(n log2 log n)
RMRs, with high probability. �

7. CONCLUSION

We have presented a new mutual exclusion algorithm

with amortized O(log2 log n) RMRs per process, with high

probability.

We have achieved exponentially smaller bounds by weak-

ening the model of in two ways. First, we assumed an

oblivious adversary, whereas Hendler et al. [14] assume

an adaptive adversary. It has been conjectured that the

O(log n/ log log n) RMR bound is the best possible for

an adaptive adversary [18], at least for algorithms that

are starvation-free. If so, then our choice of a weaker

adversary seems fundamental. It would be interesting to

explore intermediate adversaries (see, e.g., [7], [9]).

Second, we ensure only that all processes enter the critical

section with high probability (rather than with probability 1).

This weakening does not seem fundamental. By detecting

when the counter’s value is too big or too small, it may be

possible to avoid deadlock in all cases.

It would also be interesting to consider other local spin-
ning models. It seems likely that the results here extend to

the DSM (dynamic shared memory) model, but there are

subtle differences to resolve.
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